sábado, 22 de mayo de 2010

Punto de Inflexión

Un punto de inflexión es un punto donde los valores de x de una función continua pasa de un tipo de concavidad a otro. La curva "atraviesa" la tangente. Matemáticamente la derivada segunda de la función f en el punto de inflexión es cero, o no existe.

En el cálculo de varias variables a estos puntos de inflexión se les conoce como puntos de ensilladura.


  1. Se halla la primera derivada de  f \rightarrow  f'(x)
  2. Se halla la segunda derivada de  f \rightarrow  f''(x)
  3. Se halla la tercera derivada de  f \rightarrow  f'''(x)
  4. Se iguala la segunda derivada a 0: f\,''(x) = 0
  5. Se despeja la variable independiente y se obtienen todos los valores posibles de la misma:  x = \big\{x_1, x_2,...,  x_n / f''(x_i)= 0 \quad \forall i = 1,2,...,n \big\} .
  6. Se halla la imagen de cada x_i\,sustituyendo la variable dependiente en la función.
  7. Ahora, en la tercera derivada, se sustituye cada x_i\,:
    1. Si  f'''\,(x_i) \ne 0 , se tiene un punto de inflexión en  P\,  (x_i, f(x_i)).
    2. Si  f'''\,(x_i) = 0, debemos sustituir x_i\, en las sucesivas derivadas hasta sea distinto de cero. Cuando se halle la derivada para la que x_i\, no sea nulo, hay que ver qué derivada es:
      1. Si la derivada es impar, se trata de un punto de inflexión.
      2. Si la derivada es par, no se trata de un punto de inflexión.

No hay comentarios:

Publicar un comentario