Un punto de inflexión es un punto donde los valores de x de una función continua pasa de un tipo de concavidad a otro. La curva "atraviesa" la tangente. Matemáticamente la derivada segunda de la función f en el punto de inflexión es cero, o no existe.
En el cálculo de varias variables a estos puntos de inflexión se les conoce como puntos de ensilladura.
- Se halla la primera derivada de
- Se halla la segunda derivada de
- Se halla la tercera derivada de
- Se iguala la segunda derivada a 0:
- Se despeja la variable independiente y se obtienen todos los valores posibles de la misma: .
- Se halla la imagen de cada sustituyendo la variable dependiente en la función.
- Ahora, en la tercera derivada, se sustituye cada :
- Si , se tiene un punto de inflexión en .
- Si , debemos sustituir en las sucesivas derivadas hasta sea distinto de cero. Cuando se halle la derivada para la que no sea nulo, hay que ver qué derivada es:
- Si la derivada es impar, se trata de un punto de inflexión.
- Si la derivada es par, no se trata de un punto de inflexión.
No hay comentarios:
Publicar un comentario